1		mark	comment	sub
(i)	10.05.52		Hand was 2 with 100 110	
(1)	$40\times0.6t-5t^2$	M1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8, \pm 10$.	
	2		Accept $40 \text{ or } 40 \times 0.8 \text{ for '} u'$.	
	$= 24t - 5t^2$	A1	Any form	_
				2
<i>(</i>)	either			
(ii)	Need zero vertical distance		and the second s	
	so $24t - 5t^2 = 0$	M1	quate their y to zero. With fresh start must have	
			correct y.	
	so $t = 0$ or $t = 4.8$	A1	Accept no reference to $t = 0$ and the other root in any	
			form. FT their y if gives $t > 0$	
	or			
			Allow use of $u = 40$ and 40×0.8 . Award even if half	
	Time to highest point, T	M1	range found.	
	$0 = 40 \times 0.6 - 10T$ so $T = 2.4$ and			
	time of flight is 4.8	A1	May be awarded for doubling half range later.	
			Havin ant Assent O.C. instead of O.C. anhy if consistent	
	range is $40 \times 0.8 \times 4.8 = 153.6$	M1	Horiz cpt. Accept 0.6 instead of 0.8 only if consistent with expression in (i). FT their <i>t</i> .	
			with expression in (i). Fit their i.	
	so 154 m (3 s. f.)	A1	cao	
	30 104 111 (0 3. 1.)	/	[NB Use of half range or half time to get 76.8	
			(g = 10) or 78.36 (g = 9.8) scores 2]	
			[If range formula used:	
			M1 sensible attempt at substitution; allow $\sin 2\alpha$	
			wrong	
			B1 $\sin 2\alpha$ correct A1 all correct A1 cao]	
				4
		6		

2				
(i)	$y = 25\sin\theta t + 0.5 \times (-9.8)t^2$	M1	Use of $s = ut + \frac{1}{2}at^2$. Accept sin, cos, 0.96, 0.28, ± 9.8 , ± 10 , $u = 25$ and derivation of -4.9 not	
	$= 7t - 4.9t^{2}$ $x = 25\cos\theta t = 25 \times 0.96t = 24t$	E1	clear. Shown including deriv of – 4.9. Accept $25 \sin \theta t = 7t$ WW Accept $25 \times 0.96t$ or $25 \cos \theta t$ seen WW	3
(ii)	$0 = 7^2 - 19.6s$ s = 2.5 so 2.5 m	M1 A1	Accept sequence of <i>uvast</i> . Accept u =24 but not 25. Allow $u \leftrightarrow v$ and ± 9.8 and ± 10 +ve answer obtained by correct manipulation.	2
(iii)	Need $7t - 4.9t^2 = 1.25$	M1	Equate y to their (ii)/2 or equivalent.	
	so $4.9t^2 - 7t + 1.25 = 0$	M1	Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula).	
	t = 0.209209 and 1.219361	A1	Both. cao. [Award M1 A1 for two correct roots WW]	
	need 24× (1.219 0.209209) = 24×1.01 so 24.2 m (3 s.f.)	B1	FT their roots (only if both positive)	4
(iv) (A)	$\dot{y} = 7 - 9.8t$	M1	Attempt at \dot{y} . Accept sign errors and $u = 24$ but	
	$\dot{y}(1.25) = 7 - 9.8 \times 1.25 = -5.25 \text{ m s}^{-1}$	A1	not 25	
(B)	Falling as velocity is negative	E1	Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time.	
(C)	Speed is $\sqrt{24^2 + (-5.25)^2}$	M1	Use of Pythag and 24 or 7 with their \dot{y}	
	= 24.5675 so 24.6 m s ⁻¹ (3 s. f.)	A1	cao	5

(v)				
	$y = 7t - 4.9t^2$, $x = 24t$	M1	Elimination of <i>t</i>	
	so $y = \frac{7x}{24} - 4.9 \left(\frac{x}{24}\right)^2$	A1	Elimination correct. Condone wrong notation with interpretation correct for the problem.	
	$y = \frac{7x}{24} - 4.9 \times \frac{x^2}{576} = \frac{0.7x}{576} (240 - 7x)$	E1	If not wrong accept as long as $24^2 = 576$ seen.	
			Condone wrong notation with interpretation correct for the problem.	
	either		1	
	Need $y = 0$	M1		
	so $x = 0$ or $\frac{240}{7}$ so $\frac{240}{7}$ m	A1	Accept $x = 0$ not mentioned. Condone $0 \le X \le \frac{240}{7}$.	
	or	B1	Time of flight 10/7 s	
		B1	Range $^{240}/_{7}$ m. Condone $0 \le X \le \frac{240}{7}$.	
			,	5
				19

3

$$0 = u - 9.8 \times 3$$

 $u = 29.4 \text{ so } 29.4 \text{ m s}^{-1}$

$$s = 0.5 \times 9.8 \times 9 = 44.1$$
 so 44.1 m

mark

M1 *uvast* leading to u with t = 3 or t = 6

A1 gns consistent

M1 *uvast* leading to *s* with t = 3 or t = 6 or **their** u

F1 FT **their** u if used with t = 3. Signs consistent.

Award for 44.1, 132.3 or 176.4 seen.

[Award maximum of 3 if one answer wrong]

1 1

Sub

2

2

Sub

4

(i)

$$0^2 = V^2 - 2 \times 9.8 \times 22.5$$

$$V = 21$$
 so 21 m s ^{-1}

(ii) $28 \sin \theta = 21$ so $\theta = 48.59037...$

(iii) Time to highest point is $\frac{21}{9.8} = \frac{15}{7}$ Distance is $2 \times \frac{15}{7} \times 28 \times \cos(\text{their }\theta)$..

79.3725... so 79.4 m (3 s. f.)

mark

M1 Use of appropriate *uvast*. Give for correct expression

E1 Clearly shown. Do not allow $v^2 = 0 + 2gs$ without explanation. Accept using V = 21 to show s = 22.5.

M1 Attempt to find angle of projection. Allow $\sin\leftrightarrow\cos$.

B1 Or equivalent (time of whole flight)

M1 Valid method for horizontal distance. Accept ½ time.

Do not accept 28 used for horizontal speed or vertical speed when calculating time.

B1 Horizontal speed correct

A1 cao. Accept answers rounding to 79 or 80.

[If angle with vertical found in (ii) allow up to full marks in (iii). If sin ↔ cos allow up to B1 B1 M0 A1]

[If $u^2 \sin 2\theta / g$ used then

M1* Correct formula used. FT their angle. M1 Dep on *. Correct subst. FT their angle. A2

cao]

8

3

5		mark		Sub
(i)				
	$u = \sqrt{10^2 + 12^2} = 15.62$	B1	Accept any accuracy 2 s. f. or better	
	$\theta = \arctan\left(\frac{12}{10}\right) = 50.1944$ so 50.2 (3s f.)	M1	Accept $\arctan\left(\frac{10}{12}\right)$	
	(-0)		(Or their 15.62 $\cos \theta = 10$ or their 15.62 $\sin \theta = 12$)	
		A1	[FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B0 M0 SC1 for both $u\cos\theta = 10$ and $u\sin\theta = 12$ seen]	3
(ii)	vert $12t - 0.5 \times 10t^2 + 9$	M1	Use of $s = ut + 0.5at^2$, $a = \pm 9.8$ or ± 10 and $u = 12$ or 15.62 Condone $-9 = 12t - 0.5 \times 10t^2$, condone $y = 9 + 12t - 0.5 \times 10t^2$. Condone g .	
	$= 12t - 5t^2 + 9$ (AG)	A1 E1	All correct with origin of $u = 12$ clear; accept 9 omitted Reason for 9 given. Must be clear unless $y = s_0 +$	
	,		used.	
	horiz 10t	B1		4
(iii)	$0 = 12^2 - 20s$	M1	Use of $v^2 = u^2 + 2as$ or equiv with $u = 12$, $v = 0$. Condone $u \leftrightarrow v$	7
	s = 7.2 so 7.2 m	A1	From CWO. Accept 16.2.	
(iv)	We require $0 = 12t - 5t^2 + 9$ Solve for t the + ve root is 3 range is 30 m	M1 M1 A1 F1	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60t = 10t$	B1	Condone unsimplified expression. Award for	
	-		Condone unsimplified expression. Award for 20cos60 = 10	
	Comparison with Horiz displacement of A	E1	Comparison clear, must show 10 <i>t</i> for each or explain.	2
(vi)	vertical height is $20\sin 60t - 0.5 \times 10t^2 = 10\sqrt{3}t - 5t^2 \text{ (AG)}$	A1	Clearly shown. Accept decimal equivalence for $10\sqrt{3}$ (at least 3 s. f.). Accept $-5t^2$ and $20\sin 60 = 10\sqrt{3}$ not explained.	1
(vii)	Need $10\sqrt{3}t - 5t^2 = 12t - 5t^2 + 9$	M1	Equating the given expressions	
	$\Rightarrow t = \frac{9}{10\sqrt{2} + 12}$	A1	Expression for t obtained in any form	
	$10\sqrt{3}-12$ t = 1.6915 so 1.7 s (2 s. f.) (AG)	E1	Clearly shown. Accept 3 s. f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	
	total	19		3

6	(i)	Vertical motion: $s = ut + \frac{1}{2}at^2$		
		At water: $-1.225 = 0 \times t + \frac{1}{2} \times (-9.8) \times t^2$	M1	Condone sign errors
		$\Rightarrow t = 0.5 \text{ s}$	A1	Signs must be consistent
			[2]	
	(ii)	Horizontal component of velocity = 20 m s ⁻¹	B1	
		Vertical component = $0.5 \times 9.8 = 4.9 \text{ m s}^{-1}$	B1	Follow through for "their t x 9.8"
		Speed = $\sqrt{20^2 + 4.9^2} = 20.6$	M1	Use of Pythagoras on previous two answers
		$\tan \alpha = \frac{4.9}{20}$ $\alpha = 13.8^{\circ}$	M1 A1 [5]	Use of an appropriate trig ratio with their figures for v . Must be explicit if final answer is incorrect. Cao

7	(i)	<i>A</i>)	Height 5 m	B1	No units required; apply ISW if incorrect units given	
		(B)	g has been taken to be 10 m s ⁻²	B1	Allow +10 or -10. No units required; apply ISW if incorrect units given	
				[2]		
	(ii)		Displacement is $\binom{150}{80} - \binom{90}{80}$	M1	Displacement must be given as a vector. Allow a description of a vector in words. Attempts at substitution for <i>t</i> and subtraction of vectors must be seen	
			(60)		Cao	
			$= \begin{pmatrix} 60\\0 \end{pmatrix}$	A1	If the candidate then goes on to give a non-vector answer of "60 m", apply ISW.	
				[2]		
	(iii)		x = 30t	B1		
			$y = 5 + 40t - 5t^2$	B1		
			$y = 5 + 40t - 5t^2$ $y = 5 + 40 \times \left(\frac{x}{30}\right) - 5 \times \left(\frac{x}{30}\right)^2$	M1	Attempt to eliminate t	
			$y = 5 + \frac{4}{3}x - \frac{x^2}{180}$	A 1	N errors	
				[4]		